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Sjednica Vijeca organizacione jedinice na kojoj
je dat prijedlog za imenovanje komisija za | 11.02.2021.
pregled i ocjenu doktorske disertacije
ISPUNJENOST USLOVA DOKTORANDA

U skladu sa ¢lanom 38 pravila doktorskih studija kandidat je d10
sopstvenih istraZivanja vezanih za doktorsku disertaciju publikovao u
tasopisu sa (SCI/SCIE) liste kao prvi autor.

Spisak radova doktoranda iz oblasti doktorskih studija koje je
| publikovao u ¢asopisima sa SCI/SCIE liste:

[1]1 S. Vujovi¢, A. Dragani¢, M. Laki¢evi¢, I. Orovi¢, M. Dakovi¢,
M. Beko, and S. Stankovi¢, “Sparse Analyzer Tool for Biomedical
Signals,” Sensors, 20(9), 2602, doi: 10.3390/s20092602, 2020

Link na rad:
https://www.mdpi.com/1424-8220/20/9/2602
Informacija o IMPACT faktoru Casopisa:

https://www.mdpi.com/journal/sensors

[2] LJ. Stankovié, M. Dakovi¢, I. Stankovi¢, and S. Vujovic¢, “On
the Errors in Randomly Sampled Nonsparse Signals Reconstructed
with a Sparsity Assumption ,” IEEE Geoscience and Remote
Sensing Letters, Vol: 14, Issue: 12, Dec. 2017, pp. 2453 - 2456 ,
DOI: 10.1109/LGRS.2017.2768664

Link na rad:

https://ieeexplore.ieee. 0rg[abstract[dogument[81 10831

Informacija o IMPACT faktoru Casopisa:
https://ieeexplore.ieee.org/xpl/Recentissue.jsp?punumber=8859

[3]1 LJ. Stankovi¢, M. Dakovi¢, and S. Vujovi¢, “Reconstruction of
Sparse Signals in Impulsive Disturbance Environments,” Circuits,
Systems and Signal Processing, vol. 2016. pp. 1-28, DOI:
10.1007/s00034-016-0334-3, ISSN: 0278-081X print, 1531-5878
online (on-line published version available on https://rdcu. be/4XQ8 )

Link na rad:
httDs:/ﬂink‘snrinqgr.corn@rticleﬂ0.1007/500034-016-0334—3

Informacija o IMPACT faktoru casopisa:
https://www.springer.com/journal/34
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IET Signal Processing, vol. 8, no. 3, pp. 246 -256, 2014,
(arXiv:1309.5749v1).

Link na rad:
https://digital-library.theiet.org/content/journals/10.1049/iet-
spr.2013.0385
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[5] M. Brajovi¢, 8. Vujovi¢, 1. Orovi¢, and S. Stankovic,
“Coefficient Tresholding in the Gradient Reconstruction
Algorithm for Signals Sparse in the Hermite Transform Basis,”
Applications of Intelligent Systems 2018 (APPIS 2018), Las
Palmas De Gran Canaria, 8-12 January 2018

[6] S. Stankovi¢, S. Vujovi¢, I. Orovié, M. Dakovi¢, and L],
Stankovi¢, “Combination of Gradient Based and Single Iteration
Reconstruction Algorithms for Sparse Signals,” 17th IEEE
International Conference on Smart Technologies, IEEE
EUROCON 2017

[7] S. Vujovi¢, 1. Stankovi¢, M. Dakovi¢, and LJ. Stankovi¢,
“Comparison of a Gradient-Based and LASSO (ISTA) Algorithm
for Sparse Signal Reconstruction,” 5th Mediterranean
Conference on Embedded Computing MECO 2016, Bar, June
2016

[8] S. Vuyjovié, M. Dakovi¢, I. Orovié, and S. Stankovi¢, “An
Architecture for Hardware Realization of Compressive Sensing
Gradient Algorithm,” 4th Mediterranean Conference on
Embedded Computing, MECO - 2015

[91 S. Vujovi¢, M. Dakovié, and LJ. Stankovi¢, “Comparison of
the Ll-magic and the Gradient Algorithm for Sparse Signals
Reconstruction,” 22nd Telecommunications Forum , TELFOR,

2014
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[10] 1J. Stankovi¢, M. Dakovié¢, and S. Vujovié¢, “Concentration
measures with an adaptive algorithm for processing sparse
signals,” ISPA 2013, Trieste, Italy, 4-6 September 2013, pp.
418-423

Obrazlozenje mentora o koriSéenju doktorske disertacije u
publikovanim radovima

Rezultati istrazivanja doktoranda Msc Stefana Vujovi¢a koji su korisé¢eni
pri izradi doktorske disertacije su prezentovani kroz 4 rada, publikovana
u renomiranih medunarodnim casopisima sa impakt faktorima: 3.27,
3.83, 1.68, 1.69. Na jednom od pomenuta 4 rada (impakt faktor 3.27),
kandidat je prvi autor. Pored pomenuta Cetiri rada, dio rezultata je
prezentovan i na 6 medunarodnih konferencija.

U radu ,Sparse Analyzer Tool for Biomedical Signals” objavljenom u
¢asopisu ,Sensors”(impakt faktor 3.27), izdavac¢a MDPI na kojem je
kandidat prvi autor, je predstavljen virtuelni instrument za analizu
rekonstrukcionih algoritama kompresivno odabranih signala. Jedan od
algoritama koji je implementiran i ¢ije se funkcionalnosti mogu ispitivati
kroz instrument je i gradijentni algoritam koji zauzima centralno mjesto u
doktorskoj disertaciji. U Cetvrtoj glavi doktorske disertacije, gdje se
analziziraju primjene gradijentnih algoritama, predstavljeni su rezultati
primjene na medicinskim signalima kao $to su rendgen snimci i ECG
signali, a koji su i analizirani u okviru navedenog rada.

Gradijentni algoritam koji je centralna tema doktorske disertacije je
predstavljen u radu ,Adaptive Variable Step Algorithm for Missing
Samples Recovery in Sparse Signals” objavljenom u Casopisu IET Signal
Processing (impakt faktor 1.69). Predstavljeni algoritam rekonstrukciju
kompresivno odabranih signala vr$i u vremenskom domenu, za razliku od
veéine state-of-the-art algoritama koji rekonstrukciju vrse u domenu
rijetkosti. Rad je citiran preko 80 puta (Google Scholar). Gradijetni
algoritmi, tj. njihova analiza, implementacije i primjene se prozimaju kroz
drugu, trecu i ¢etvrtu glavu doktorske teze.

Primjena gradijenta mjere je takode koriSCena za detekciju Suma.
Rezultati ovog istrazivanja su predstavljeni u radu ,Reconstruction of
Sparse Signals in Impulsive Disturbance Environments,” objavljenom u
gasoposu Circuits, Systems and Signal Processing (imapkt faktor 1.68)
renomiranog izdava¢a Springer. Dobijeni rezultati su prikazani u Cetvrtoj
glavi doktorske disertacije.
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U fezi je predstavljen i originalni teorijski doprinos u oblasti
kompresivnog odabiranja, koji se ogleda u egzaktnoj formuli za gresku u
rekonstruisanim koeficijentima signala koji nijesu rijetki, ili su priblizno
rijetki, pri ¢emu je rekonstrukcija vrSena sa pretpostavkom rijetkosti.
Rezultati ovog istrazivanja su prezentovani u radu ,On the Errors in
Randomly Sampled Nonsparse Signals Reconstructed with a Sparsity
Assumption,” objavljenom u casopisu 1EEE Geoscience and Remote
Sensing Letters (impakt faktor 3.83), a kojeg izdaje najprestizniji izdavac
za oblast elektrotehnike IEEE. Rezultati predstavljeni u ovom radu su
prikazani u prvom poglavlju doktorske disertacije u kojoj su se razmatrali
teorijski koncepti kompresivnog odabiranja.

Jedan dio rezultata kandidata je prezentovan na medunarodnim
konferencijama medu kojima treba ista¢i EUROCON, ISPA i MECO
konferencije.

Datum i ovjera (pecat i potpis odgovorne osobe)

U Podgorici,
AN, 0% LonA .

24 DEKAN~4
V- Poporss-~Rougprn,

Prilog dokumenta sadrii:

1. Potvrdu o predaji doktorske disertacije organizacionoj jedinici

2. Odluku o imenovanju komisije za pregled i ocjenu doktorske

disertacije

Kopiju rada publikovanog u ¢asopisu sa odgovarajuce liste

Biografiju i bibliografiju kandidata

5. Biografiju i bibliografiju ¢anova komisije za pregled 1 ocjenu
doktorske disertacije sa potvrdom o izboru u odgovarajuce
akademsko zvanje i potvrdom da barem jedan ¢lan komisije nije u
radnom odnosu na Univerzitetu Crne Gore
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POTVRDA

MSc Stefan Vujovié, student doktorskih studija na Elektrotehnic¢kom fakultetu
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Na osnovu ¢lana 64 Statuta Univerziteta Crne Gore, u vezi sa ¢lanom 41 Pravila doktorskih
studija, na predlog Komisije za doktorske studije, Vijeée Elektrotehni¢kog fakulteta u Podgorici, na
sjednici od 11.02.2021. godine, donijelo je

ODLUKU

I Utvrduje se da su ispunjeni uslovi iz Pravila doktorskih studija za dalji rad na doktorskoj
disertaciji ,,Analiza, implementacija i primjena gradijentnih algoritama za rekonstrukciju
kompresivno odabranih signala“, kandidata MSc Stefana Vujovica.

II Predlaze se Komisija za ocjenu navedene doktorske disertacije, u sastavu:

1. Prof. dr Irena Orovi¢é, Elektrotehni¢ki fakultet Univerziteta Cme Gore,
2. Prof. dr Milo§ Dakovié, Elektrotehni¢ki fakultet Univerziteta Crne Gore,
3. Doc. dr Jonatan Lerga, Tehmi&ki fakultet Sveu¢iliita u Rijeci.

Komisija iz tatke Il ove Odluke podnijece Izvjestaj Vijecu Fakulteta u roku od 45 dana od
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Abstract: The virtual (software)} instrument with a statistical analyzer for testing algorithms
for biomedical signals’ recovery in compressive sensing (CS) scenario is presented. Various CS
reconstruction algorithms are implemented with the aim to be applicable for different types of
biomedical signals and different applications with under-sampled data. Incomplete sampling/sensing
can be considered as a sort of signal damage, where missing data can occur as a result of noise or
the incomplete signal acquisition procedure. Many approaches for recovering the missing signal
parts have been developed, depending on the signal nature. Here, several approaches and their
applications are presented for medical signals and images. The possibility to analyze results using
different statistical parameters is provided, with the aim to choose the most suitable approach
for a specific application. The instrument provides manifold possibilities such as fitting different
parameters for the considered signal and testing the efficiency under different percentages of missing
data. The reconstruction accuracy is measured by the mean square error (MSE) between original
and reconstructed signal. Computational time is important from the aspect of power requirements,
thus enabling the selection of a suitable algorithm. The instrument contains its own signal database,
but there is also the possibility to load any external data for analysis.

Keywords: biomedical signals; compressive sensing; concentration measure; gradient algorithm;
OMP; SIRA; statistical analyzer; sparse signal processing; TV minimization; virtual instrument

1. Introduction

The processing of under-sampled signals has attracted significant research interest in the last
decade [1-10]. The signal is under-sampled if the number of available samples is less than the number
of samples required by the Shannon Nyquist sampling theorem. The under-sampling can be done
intentionally during the acquisition procedure or signal samples could be lost during the transmission
or discarded owing to noise. Intentional omitting of signal samples and their later reconstruction
found its usage in the applications dealing with a large number of signal samples, with the purpose
of increasing the processing speed. Such an approach could be important in medical applications.
For example, in magnetic resonance imaging (MRI}, lowering the required amount of data reduces the
time of patient exposure to the harmful MR waves [11].

With the increasing use of wireless technology and smart devices in our everyday life, portable
medical devices become very popular [12-14]. Modern technology is changing the way medicine
approaches various health problems in a number of diseases and for a large number of patients. Using
portable medical devices, the possibility to monitor patient condition every moment and in every place
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is provided. Technology can ease life to many patients, especially those with chronic diseases, patients
with diabetes, those with cardiovascular diseases, or elderly people [13]. For example, automatic
reminders for taking medications are developed, as well as devices for monitoring different health
parameters [14,15] such as body temperature, glucose levels, blood pressure, and so on. Real-time
monitoring and on-time reactions can save the patient’s life in situations when there is no need for
hospitalization, but the vital parameters should constantly be tracked. Monitoring in such a way
improves patient comfort, while at the same time unloading the hospital capacities in terms of staff
and space [13].

Another important aspect of digital monitoring is the opportunity to store collected data in the
patient’s medical record, from where it can be easily transferred to hospitals and clinicians all over
the world. The diagnosis could be provided at a distance, without having physical contact with the
patient. This has numerous advantages: avoiding going to the hospitals and waiting, getting opinions
from many professionals around the world, and so on.

The communication between the patient and the healthcare professional should be fast and secure.
The intentional under-sampling of medical data could lead to dealing with a much smaller amount of
data, and thus faster transmission [11]. Moreover, sending only part of the criginal signal keeps the
information sent secure. At the receiver part, the under-sampled signal should be recovered and back
to its original version. The special problem during the transmission could be noise. Noisy samples
could be considered as missing and, if they are detected, lead to signal under-sampling [4].

One of the new areas that enables under-sampled signal recovery is called compressive sensing
(CS). The idea behind the concept of CS is to reduce the sampling rate far below that defined by
the Nyquist-Shannon sampling theorem, and later recover the whole signal by applying complex
mathematical algorithms [2,4,11,16-32]. Therefore, the CS represents a completely new paradigm
compared with the traditional sensing strategy, and has been used in various applications such
as image processing, biomedical signals, wireless communications, and radars [26-30]. In the CS
scenario, the signal can be completely recovered from a small set of randomly acquired linear
measurements, if the signal of interest has a sparse representation when represented in a certain
transformation basis. Sparse representation means that the signal can be represented by a few non-zero
coefficients, which is much lower than its original dimension. Consequently, for signals in real-world
applications, it is important to identify sparse representations using the appropriate dictionaries of
atoms or transformations.

Here, the application of this attractive approach to the various signals in biomedicine will be
presented, providing clinicians and researchers with a good base for possible improvement of different
technology-based services and devices used in medicine. The proposed instrument implements a
number of algorithms in order to perform reconstruction, as well as to compare the results obtained
with different algorithms. This tool can be used to create a number of different signals, with a specially
designed panel where all important signal parameters can be easily chosen, such as signal sparsity,
percent of missing samples, signal length, and so on. Finally, the paper combines several algorithms
that solve the reconstruction problem using quite different mathematical approaches, also contributing
to the educational dimension of the proposed instrument. The software provides the possibility to
compare several different algorithms in terms of reconstruction precision (expressed in terms of mean
square error {MSE)) and achieved sparsity level (expressed in terms of concentration measures {,-norm
and Gini index). On the basis of the comparison results, the user chooses the transform and the
algorithm that best suit the considered signal type. Moreover, the user can choose the solution that
provides the best sparsity, or the lowest reconstruction error, or as a third option, a solution providing
the best trade-off between these two measures.

By providing the analytical visualization of results, together with reconstruction error and
concentration measures, the tool allows users to test and choose the best possible optimization
approach and the most suitable sparse domain for the applications with biomedical signals or
images. Namely, among a number of algorithms for sparse signal recovery and transform domain
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modeling, the proposed tool allows the selection of an appropriate approach combined with the
suitable transformation for achieving the most accurate reconstruction results for the considered signal
types. The tool is designed in a user-friendly manner even for the norn-specialists in the field, as it does
not require certain pre-knowledge about the implemented approaches. On the basis of the statistical
parameters for measuring reconstruction efficiency, the users are able to choose the most suitable
among the offered solution. However, it is also convenient for the researchers waorking in the field, as it
provides a set of comprehensive solutions for the processing of biomedical data that can be further
extended or adapted for different purposes.

The paper is structured as fellows. Section 2 provides a theoretical background on the CS.
Section 3 describes approaches for signal recovery that are implemented within the instrument.
Section 4 describes the software, while Section 5 gives the results applied to concrete biomedical signals
and images. The conclusion is given in Section 6.

2. Theoretical Background

Consider a time-domain signal x(n), composed of N samples, that is, n =0, 1, ..., N = L.
Suppose that the arbitrary linear transform of this signal is denoted with X(k), wherek=0,1,... ,N - 1.

If the most of the coefficients of X(k) are zero-valued or negligible, then X (k) represents a sparse
presentation of signal x(n). For a K-sparse signal, it might be said that only K coefficients of signal X(k)
are non-zero, where K << N.

Signal x{n) and X(k} are related via the following [24]:

N-1

N-1
() = Y xnpiln), xn) = + Y X()pdn), ®
k=0

n=20

where 1y (n) and its inverse yf*() are basis functions. In the case of the discrete fourier transform
(DFT) as one of the commonly used transforms, the basis function equals (n) = &2™*N Note that,
in general, CS algorithms deal with arbitrary linear transformations like discrete cosine transform
(DCT), Hermitian transform (HT), wavelet transform [33,34], and so on, while some of the algorithms
like the gradient-based one [11,32] deal even with nonlinear transformations. In this work, the HT, DCT,
and DFT transforms are considered, as they found many applications in biomedical data representation
and analysis [35-39]. For example, DFT is used for the analysis of electroencephalography (EEG) signals
and blood pressure signals [35], and DCT and DFT transforms are used in MRI image processing [36,37],
while the HT is used in electrocardiograph (ECG) and QRS sigral analysis [38,39].
Discrete Hermite function of an order p is defined as follows [5,6]:

2
eI H,(t/A)

Yyp(t) = —W

where Hp is a Hermite polynomial of the p-th order, A is the scaling factor used for “stretching” or
“compressing” the Hermite functions, while the HT matrix can be defined as follows:
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The “stretching” or “compressing” of the Hermite functions is used for better fitting of the function
to the signal [38], providing better sparsity of the signal in the HT domain.

When dealing with the HT, signal x(n) should be sampled at the non-uniform points that
correspond to the roots of the Hermite polynomial. Another approach is to interpolate the uniformly
sampled signal in order to obtain requested signal values at the non-uniform points. Hermite functions
obtained by the uniform sampling of the corresponding continuous functions are not orthogonal.
Therefore, in order to obtain the orthogonal function, the interpolation of the Hermite function is used.
The second approach, interpolation, is also implemented within the instrument. The signal sampled
according to the sampling theorem is interpolated using the sinc interpolation formula [11,27]:

K
sm(ﬂ ot —iT)/T) B
x{(oty) = ; p—— YT m=1,...,M. @)

where T denotes the sampling period. The optimal value of the parameter ¢ produces the best possible
concentration in the transform domain, and it can be found using the £1-norm optimization:

Gopt = min [IHT{x(enm )}l (S)

The instrument implements several cormunonly used sparsity measures that are suitable for the
observed signals. Besides the {i-norm concentration, there are a lot of approaches for measuring
sparsity, for example, entropy based approaches [40,41] or the Gini index [41-44]. The Gini index
satisfies most of the desirable characteristics of measures of sparsity and overcomes the limitations of
standard norm-based sparsity measures, as proven in [41]. It is suitable for comparing the sparsity of a
signal in different transform domains [42], and is alsc used as a measure of sparsity for biomedical
signals [43,44]; therefore, this measure is implemented within the instrument together with the £;-norm
concentration. The Gini index is calculated according to the following relation:

N Ixs(i)l N-i+1
G(l’) = 1—21.;1W{—N—], (6)

where x; is sorted version of a set of elements in ascending order. The Gini index values can be between
0 and 1. A higher value of the Gini index corresponds to better sparsity.

Here, the HT transform is mainly implemented for the application in electrocardiograph (ECG)
signals and their QRS complexes. An ECG signal represents the electrical activity of a heart over
time, while the QRS complex is formed by three of the graphic deflections of the ECG signal [45].
The analysis of the ECG signals and QRS complexes is used in heart function monitoring and disease
diagnostic. The interval between two successive QRS provides information about the regularity of the
cardiac thythm. Moreover, the QRS observation is used in the diagnosis of other heart abnormalities
such as myocardial infarction or arrhythmia and, therefore, the QRS represents an important part of the
ECG signal. Having in mind that the Hermite functions show physical similarity with QRS complexes,
they are found 1o be a suitable tool for their analysis [6,38,46].

Another observed transformation, DCT, has the following form:

N-1
DCT(k) = c(k) x(n)ca

=0

wherek =10,...,N — T and c(k) is as follows:
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In the matrix notation, the above equations can be generally written as follows: X = ¥x and
x = ¥71X, where the vector X has elements X(k), and vector x has elements x(n). Both vectors are of
length N, and ¥ is N X N transform matrix with elements P (n).
Suppose an M-length vector y, which is a linear combination of elements from vector X. This vector
is obtained as follows [4]:
y = AX, (9)

where A is an M X N matrix. The CS task is to reconstruct signal X (or x) from vector y. Note that the
length of vector y is lower than the length of X, because (M < N). Construction of matrix A attracts
significant research interest. Namely, the randomly constructed sensing matrix is considered in all
implemented algorithms. The sensing matrix is a random matrix ® that is multiplied by the transform
matrix ¥, resulting in the compressive sensing matrix A. The compressive sensing matrix A is called
the random partial transform domain matrix containing the random combination of rows from ¥ that
corresponds to the random position of the available samples. The vector y of length M is equal to
samples of signal x, taken at the positions corresponding to preserved rows in matrix ¥~1, that is,

y() = x(n), i = 1,2,... M. (10)

The reconstruction error may depend on the choice of the domain of sparsity and recanstruction
algorithm, butin certain cases, it may also be the consequence of the quantization influence, as discussed
in [47]. Namely, the limitaticns of the number of bits used for the representation of the available signal
samples can affect the reconstruction performance. If the measurements y(m) are normalized to the
range —1 < y(m) < 1, and the B-bit registers are assumed, then sparse coefficients X (i} have to be within
the range —min{ VM/K, 1} < X(i) < min[ VM/K, 1], in order for product y = AX to produce amplitudes
below 1 [47]. The reconstruction error related to the number of bits is given by [47] 2 =301 % log, K
- 6.02B — 7.78. The proposed solution is designed for the 64-bit computer device, so the effects of
quantization in this case can be considered negligible. However, the quantization issues should be
carefully considered especially for hardware realizaticns of considered reconstruction algorithms.

3. Approaches for Under-Sampled Signal Reconstruction

Another directicn within the CS area is related to the reconstruction algorithms for compressed
sensed data. Many signal reconstruction algorithms have been proposed depending on the type of
signal and CS scenario [4,11,16-32]. The performance of these algorithms may vary depending on the
number of missing samples, level of sparsity, and amount of external noise, and there is still a lack of
general instructions for their practical use.

Among the algorithms for 1D signals’ reconstruction that are included in the Virtual instrument,
the £1-magic algorithm is included from the class of convex algorithms. Next, the orthogenal matching
pursuit (OMP) algorithm [21] from the class of greedy algorithms is implemented, as well as the single
iteration construction algorithm (STRA), based on the analytical threshold derivations [9,11,26] and
generalized deviation-based reconstruction algorithm [23]. Finally, as an efficient and simple solution,
the gradient-based convex algorithm is implemented [32]. This algorithm suits for a general class
of signals, and for both 1D and 2D cases. It can be successfully used when the measurements are
affected by the noise and also provides satisfactory results for the natural images reconstruction from a
very reduced set of pixels. Greedy approaches such as SIRA, OMF, and generalized deviation-based
reconstruction algorithm (GDBRA) are faster, but less precise compared with convex optimization
algorithms and also require a priori knowledge about the signal (e.g., a number of components).
The implemented reconstruction algorithms are briefly described in the sequel.

3.1. L1-Magic

The soluticn of problem (9) requires exhaustive searches over subsets of columns of the C5
matrix A and, therefore, is not comnputationally feasible. Computationally more suitable approaches
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solve a convex optimization problem through linear programming, such as basis pursuit (BP),
basis pursuit de-noising (BPDN), least angle regression (LARS), least absolute shrinkage and selection
operator (LASSO) [4,11,18,21,22], and so on. The near-optimal approach is provided using the convex
£1-minimization. It is defined as follows:

min||X|}; subjecttoy = AX. (11)
Standard linear program form can be recast as follows [22]):

m)%n(cn, X) subjecttoy = AX, f;i{(X} <0. (12}

Eachof fi(X) = (¢;,;X)+4;, i = 1,...,mis a linear functional for ¢; € RY, d; € R. At the optimal
point, there will exist dual vectors v* € RK and A" € RM that satisfy Karush-Kuhn~Tucker conditions:

o+ ATV + T A =0, AHX) =0,i=1...,m
i

X bve (13)
AX =y, fi(X)<0,i =1,...,m

The algorithm finds the needed vector (optimal dual vector) by solving the system of nonlinear
equations. At the interior point (X, v*, A*), the system is linearized and solved.

3.2, Gradient-Based Algorithm

The recently proposed gradient algorithm [32] for sparse signal reconstruction is a computationally
efficient algorithm that belongs to a wide class of gradient CS algerithms. The idea behind this algorithm
Is to observe missing samples in a dense domain as the variables, which are reconstructed in a way to
produce minimal concentration measure in the sparse domain. Reconstruction of missing samples is
the main difference of this algerithm compared with the others, which mainly reconstruct the signal in
the sparse domain. The implementation steps for the 1D signal are given in Algorithm 1.

3.3, SIRA—Single Iteration Reconstruction Algorithm

Single iteration reconstruction algorithm [3,6,7,25] is based on the idea of separating signal
components in the sparsity domain from the noise components that appear as the consequence of missing
samples. The required assumption is that all signal components are above the calculated threshold,
while the noise components are under the threshold. The probability that values corresponding to

noise are Jower than T is P(T).
Depending on the sparsity domain, the threshold is calculated according to the relations derived

in [6,7,25]. In the case of the DFT as a sparsity domain, the threshold Tpry is as follows:

Toer = /-0l log(1~ P(T)¥R) x y-o2,clog(1-P(T)¥), (14)

If the DCT is considered as a transformation domain, the threshold Tper is calculated as follows:

M(N_M)K (15)

Tpcr = 4 Nz—(m,

while in the HT domain, the threshold Tyt is follows:

Tyr = UMS\[(—tl/:rr—aL-l— \[(4/7r+aL)2—4aL)/a, (16)

where ¢ « 0.147, L — log(l - (P(T))Z/M) and P(T) is desired probability {e.g., 0.99).
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Algorithm 1, Gradient-based algorithm

Input: set of the positions of the missing samples: Ny; measurement vector y;

Set x(9 (1) — y{n) forn ¢ N,
Set x®)(n) — 0 forn e N,
m—0
Set A — max|x(% (n}|
repeat
repeat
x(H) () — x (), for each n
forn; e N, do
X (k) — O[x"(m) + A6(n - m)],
X{k) U{x(’”)(n) - Ab{n- n,—)}, {3 - transformation)
N=1
glm) =& LK™ ()l =1~ (k).
20 (1) = x(0) () - glmy)
end for
mem+1
until stopping criterion is satisfied

A—A/3
until required precision is achieved

Output: reconstructed signal x") ()

In Equations (14)-(16), M denotes the number of missing samples, N is the signal length,

and K

is the sparsity. The parameter N — K in Tpgr could be approximated as N, based on the fact that
K << N. The steps of the algorithm are given in Algorithm 2. The resulting vector X contains the signal
compaonents values Xg at positions k, while the rest of the transform domain coefficients are zero.

Algorithm 2, SIRA

Input:
Measurement vector y; M x N matrix A; signal sparsity K

O
O

o OO0 0O

Set desired probability (e.g., P « 0.59)
Calculate variance—variance is calculated by using one of the relations, depending on the chosen
transformation domain. The corresponding equations are in the following table:

Transformation domain DFT DCT HT
2 s T Tots = .
Variance MSy o = Mmhr'\f])_z. Az = %{ﬁ L A?
— MM Z y‘(\:[) P=1 =1
T & a2 N 2
);, Af = g L s*(n),

—

neM

s(n) — available samples

For a given P calculate threshold according to relation (13);

Calculate the initial transforin domain vector Xg : Xp = A7ly;

Find positicns of components in X higher than nermalized threshold T, k = arg{|Xpl > T/N);
Form CS matrix by using only k columns from A, Acs « A(k)

-1
Calculate Xp = (A(T_-SACS) Agsy"

Output: Xp
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3.4. GDBRA—Generalized Deviation-Based Reconstruction Algorithm

This algorithm uses the model of general deviations in the transform domain instead of transform
representation itself. The algorithun works with signals sparse in the DFT domain, and the generalized
deviations are derived for the DFT case. The use of generalized deviations is inspired by the robust
statistics theory, where the form of transformation is adapted to the specific noise environmnent.
Consequently, this approach provides flexibility of using different types of minimization norms for
different noisy environments. The algorithun [23] is described through the steps in Algorithm 3.

Algorithm 3. GDBRA

O  Step1: Foreachk=0,1,..., N -1 calculate generalized deviation GD(k) as:

GD(K) =
. oy ¥ |E
= memn 'x(nm)e‘:'?”k"m/”— mean {:c(m)e‘ﬂ”_:fl,...,x(nM)e‘ﬂ"%” }
1 ENgogit M €Nt

where menn [f(np)) is used to find mean value of vector with elements f(1a), for ny € Navail.
g EN st

Tor norm ¢ use L = 2, while for norm §; use L = 1.

O  Step 2: Determine the signal supportk = arg(GD(k) < T} where T can be calculated with respect to
median|GD(k)}, or p - median|GD(k)) (where p is constant close to 1) for example, but also with respect to
mean or minimal value. The vector of positions k should contain all signal frequencies k; € k for any
I=1,...,K

O Step 3: Set f(k) = 0 for frequencies k ¢ k;;

O Step 4: the estimates of the DFT values can be calculated by solving the set of equations, at the localized
frequencies from the vector k, where k contains K signal frequencies k = k1, k2, ... k. A system of
equations is set as follows:

K o
£ g — s
i=1

O Step 5: the CS matrix Acg is formed as a partial DFT matrix: columns correspond to the positions of
available samples, rows correspond to the selected frequencies. The system is solved in the least
square sense;:

X = (AESACS)_IA& y

3.5. OMP—Orthogonal Matching Pursuit

Orthogonal matching pursuit (OMP) is a kind of greedy algorithm that finds the best correlation
between measurements vector y and the matrix A through iterations. In each iteration, the column of
A corresponding to certain sparse domain coefficient is found. The OMP implementation is given in
Algorithm 4.

3.6. TV Minimization

Another approach, the total variation (TV) minimization, is implemented in the Virtual instrument.
This approach can be successfully applied to both 1D and 2D signals. Generally, the images are not
strictly sparse either in the spatial or in the space domain. Therefore, the £1-minimization of the
image gradient, named TV minimization, is found to be a more suitable approach than minimizing
the image coefficients. This approach is suitable for noisy signals as well and is described with the
following relation:

~ D (R R 5)) 17
Xy = E;,jl(vx)r‘jlf where Vi x = { x(i,f+1) = x(i f) w7
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In this paper, TV minimization is combined with the DFT and DCT transformations.

Algorithm 4: Orthogonal matching pursuit

Input: Measurement vector y, M x N matrix A, signal sparsity K
| Set initial residual: ry — y

] Set initial indices: 0y — @

B Setmatrix of chosen columns: ©g « ||

[

fori—1teK wp = a:gmax|(r;_1,Aj>| - maximum correlation column
=1,.,N
0 — O U - update set of indices 0 — [®,_1A4,] -
update set of chosen columns X; = argmin|lr;_; — G),-xll% a; — Qx;
I —y-—a; *
[ end for

Output: xg and Qg

3.7. Douglas—Rachford Algorithm

An efficient solution for 2D signal recovery is based on the Douglas-Rachford (DR) algorithm and
its special case, alternating directions methods of multipliers (ADMM]) [31,48]. The ADMM, that is,
a variation on the method of multipliers, is a special case of Douglas-Rachford splitting. The DR
problem is defined as follows [31-48]:

minimize(f(x) + g(x)), (18)

where f and g are convex functions that should not be smooth, but only proximable. The proximal
mappings for f and g are computed as follows [48]:

1 1
proxas(x) = argminEIIx—y||2+Af(y), proxag(x) = argmmilix—y||2+/lg(y). (19)
Y Y

In CS terms, f(x) = 7y and g(x) = |lx[;, where the affine space H is defined as H = {x: Ax =y},
while r77 is an indicator function [48]:

i) = { o e 2
Therefore, the proximal operators for functions f(x) and g(x) are as follows:
proxg(x) = max(O,l - (;—I)x, 1 1)
prox;(x) = proxa, (x) = x +AT{AATY (v - Ax).
The DR iteratively finds a solution according to the following relation:
Xer1 = (1-p/ 2+ grproxag(rprox,‘f(?k)}, 0<pu<2, (22)
where rprox denotes reversed-proximal mappings given (for function £):
rproxy, = 2proxy, —h(x). (23)

4. Design of the Software—Virtual Instrument for Biomedical Signals Reconstruction

The detailed description of the developed software is described in the sequel. The proposed
instrument is designed to work with various types of biomedical signals (both the 1D and 2D signals).
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The instrument is implemented in MATLAB 2017a version. The flowchart of the instrument is shown
in Figure 1.
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Figure 1. The flowchart for the virtual instrument realization. MSE, mean square error; SIRA,
single iteration construction algorithm; OMP, orthogonal matching pursuit; GDBRA, generalized
deviation-based reconstruction algorithun; DCT, discrete cosine transform; FFT, fast Fourier transform.

There is a specially designed panel where the required parameters for signal reconstruction can
be easily chosen, for instance, the percent of missing samples, sparse transformation domain, and so
on. The following reconstruction algorithms are implemented: £;-magic algorithm and gradient-based
algorithm from the convex optimization group, as well as the OMP algorithm, SIRA, and GDBRA from
the greedy approaches group. The gradient-based approach is alse suitable for 2D signals together with
TV minimization, which belongs to the convex optimization group. Another 2D recovery approach is
Douglas-Rachford splitting, implemented in several commonly used solvers for sparse reconstruction,
such as YALL1, SALSA, and SpaRSA.
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A special section of the Virtual instrument is devoted to the statistical analyzer, which provides
some interesting statistical parameters for the evaluation of reconstruction algorithms, such as mean
square error (MSE) and two concentration measures used for choosing the most suitable transform
or the most suitable reconstruction algorithm. The second part of the proposed Virtual instrument is
dedicated to 2D signals, that is, biomedical images. A number of images are provided in order to test
several algorithms for sparse recovery.

4.1. Part 1—Reconstruction of 1D Signals

The outlook of the solution for 1D signal recovery is presented in Figure 2. The instrument
includes all described reconstruction algorithms and their relevant parameters, with the possibility
for further extension with additional methods. In order to provide a user-friendly environment, the
instrument is structured through few sections that will be explained in detail.

Section 1—5ignal parameters adjustment: This part of the instrument is used to generate different
types of signals in order to test implemented algorithms. The database contains ECG signals,
extracted QRS complexes (there is also the option for users to extract QRS using the instrument),
signals from respiration monitor, and brain activity signals such as electroencephalography (EEG)
and electrooculography (EOG) signals. Some signals are taken from the open biomedical signals
databases [49,50], while the others (e.g., respiration signal) are recorded using the National Instruments
Elvis platform.

The first option within the instrument is to choose a signal from the drop-down menu, or to
load a certain signal by using the Load external signal option. The measurements are obtained from
time-domain samples, so there is an option to set a percentage of available data (e.g., time-domain
samples). For example, if the percent of available samples is set to 25% for the signal length of
256 samples, then the length of measurement vector y will be 64, and the remaining 192 samples have
to be recovered.

Furthermore, the options for sparse transform domain selection are provided. The transform
can be selected from the drop-down menu. Selecting a transformation automatically calculates the
concentration measure in the statistical analyzer panel. This is useful if the user does not have
prior knowledge about the signal and its sparse transform domnain. Two measures are provided,
the {1-norm and the Gini index, and these are calculated using the transform domain coefficients.
The transformation that provides minimal £;-norm or maximal value of Gini index is the sparsest
among those observed. However, for choosing the most effective reconstruction algorithm, the MSE
between the original and reconstructed signals should also be taken into account together with the
concentration measures.

In the drop-down menu, the user can choose one of the commonly used transform basis: DFT,
DCT, or HT. These are shown to be suitable for most of the considered biomedical signals [5,11,46]. It is
important to note that, for the QRS complexes, the most suitable transformation is HT, owing to the
similarity between the QRS signals and the Hermite functions. Therefore, for QRS, there is an option
to optimize HT by choosing the sigma parameter.

In this part of the Virtual instrument, there is also a drop-down menu for choosing one of the
offered algorithums. On the basis of the chosen algorithm, the panel changes and additional options
appear, showing algerithm input parameters. Gradient and {1-magic algorithms do not need any
additional parameters, while OMP requires an expected number of components in the sparse domain;
SIRA requires a value for probability P; while GDBRA requires four parameters, p, ¢, norm selection,
and a number of components in the sparse domain (p is constant that has valuesbetween 0 and 1, while ¢
can be 1 for a max, 2 for a min, 3 for a mean, or 4 for a median in generalized deviation calculation).
TV minimization requires a number of components in the low and middle frequencies, respectivety.
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Figure 2, The outlook of part for 1D signal analysis. ECG, electrocardiograph.

The part for the choice of optimal sigma parameter in HT according to Relation (5) is provided.
The sigma can be changed using the scroll button. Moreover, the optimal value, providing the
best possible concentration for the selected signal, can be automatically calculated by pressing the
Optimal button. For other transforms, the value providing the best sparsity is chosen with the help
of concentration measure values—the £;-norm and the Ginj index. The reconstruction is initiated by
pressing the Start button.

Section 2—Graphical presentation of results. This is part of the instrument where the results
are graphically presented. Depending on the chosen algorithm, there are several graphics within
this section, as presented in Figure 2 (block denoted by number 2). For the ECG signal, there is a
possibility to test the reconstruction on the whole signal, but also to choose and observe the QRS
complexes using the scroll button. Here, the original and recovered signal are displayed. Moreover,
red marks on the selected QRS complex denote the available samples. The transformation can be
calculated and displayed for the available samples only, as shown in the panel. The reconstructed
sparse representation is presented in the special graph within this section.

Section 3~—Statistical analyzer: An important part of the proposed instrument is the statistical
analyzer part. Here, the concentration measures by the £;-norm and Gini are calculated for the available
samples of the signal, as well as for the signal after the reconstruction. After the signal is recovered
using the chosen algorithm, the MSE between the original and reconstructed signal (calculated in the
time domain) is displayed on the last part of the statistical analyzer. Concurrently, the execution time
of the algorithm is also presented in the same panel. Figure 3 shows the performance of the statistical
analyzer demonstrated on the exainple of the gradient-based reconstruction algorithm.

Example in Figure 2 shows the whole ECG signal on the upper left graph, while the selected
QRS complex is shown in the upper right graph. The scroll button below the QRS graph enables QRS
selection. HT is selected as a sparsity domain, while the percentage of the available samples is set
to 50%. The optimal value for the sigma parameter is used, calculated according to (5). The graph
of selected QRS shows also the available samples denoted by red marks. Two lower graphs show
HT transform of the available samples (left lower graph) and {sparse) HT of the reconstructed signal.
The statistical analyzer displays concentration measures, £1-norm, and Gini index: (1) measures are
calculated using available samples of the selected QRS and (2) using the reconstructed signal. It can
be seen that £;-norm has a lower value for reconstructed signal compared with the value when it is
calculated for available samples only, while the value of the Gini index is higher for the recovered
signal, as expected.



Sensors 2020, 20, 2602 130f18

A CEvimwad = F x
== L st v
10 3masl recnn stLeLan
I
Sanc spmac ; Transfomatlon coefficlants of Transtormailon coafficlents at !
—
_reconstrucled signal |

Pt " | reconsiructsd sigral e
LS TRICER L EEEE T D65
o Sracart v san v {
P . ~as = ok
Py 08} — Tun
I ot opwral f e B4
B4 Sl Tan
Aeemdsbly LBl
"°§‘: it | ust vamteros . o eoisEwr
.............. wistem 02| 4568
il sigermn Bl o hire-s T |
Gracwal wl I Zorcensain messrn ol Contenti slon amssuren ‘
Snd ndex. RIS

G oek e |
nowa  semw |

i lnem tomz

| comun . Lol P Tl
Aperie 0w W B o M
Transformalion coefficlants of Transfermation coeHicients of
iy reconstructed aignal reconslruaed slgnal
i —— 08 1 _— -
Li-nagie X olp >
1 : ©
08} Start LN . s

o4 | T i 0% aun

;e
nse OIS = ot Compnoeni e | 2o

BE T smtms 02 o el ey
2 |l vnon | ] s
{0 S : Py ST ———
: : e o .

Gl ndex a9t

| [E=E 10054
g B

ET- ' NPT W0 2 A %

Figure 3. The outlook of the Comparison of the algorithrns part applied to the QRS signal recovery.

Section 4—Compare algorithms: the virtual instrument is designed in a way to provide a
comparison of the reconstruction results achieved by different algorithms. This is an important part of
the instrument, as it enables testing the most suitable approach for a considered biomedical signal
or image, in terms of reconstruction quality and processing speed. For this reason, an additional
set up section is included and it provides the selection of parameters for the comparative algorithm.
This part of the instrument, denoted by 4, is used to select one of the offered algorithms as well as to
set its parameters, as described in Section 1. The reconstruction results are displayed graphically and
evaluated numerically through MSE, computational time, and concentration measures. The outlook of
this part of the software is shown in Figure 3. In the presented example (Figure 3), for a chosen QRS
complex and 50% of available samples, the best reconstruction performance is provided by the Gradient
algorithm and {;-magic algorithms in terms of concentration measures. However, the gradient/based
algorithm provides slightly better MSE.

4.2, Part 2—Reconstruction of 2D Signals

The second part of the Virtual instrument is designed for image reconstruction. Switching between
two parts of the instrument can be done using the 1D/2D button at the top left corner of the instrument.
The reconstruction of images is performed by several algorithms. Radial-Fourier uses TV minimization
with the 2D DFT as a transform basis. The measurements are collected aiong radial lines from the 2D
DFT domain, while the number of radial lines is set as an input parameter of the algorithm.

TV minimization is used with the 2D DCT transform within the second algorithm from the
drop-down menu, where there is a possibility to set the number of low and middle frequency
coefficients. Another approach is the 2D gradient algorithm, as this algorithm produces efficient results
with natural images even in a very low number of available samples. A variation on the method of
multipliers is implemented through the Douglas-Rachford algorithm for biomedical image recovery
(the UNLocBoX software is used for Douglas—Rachford algorithm implementation [51]).

The outlook of this part of the instrument is shown in Figure 4. Users can use some of the
predefined images, or Joad their own images. Predefined images can be selected in Section 1. The image
database is downloaded from [52].
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Figure 4. The outlook of 2D part of the proposed Virtual instrument.

Section 2: For the selected image, the percent of available samples is selected (i.e., a number of
radial lines when considering the radial-Fourier algorithm or number of middle and/or low-frequency
coefficients in the TV min approach). The gradient algorithm requires a number of iterations. Section 3.
In this section, the original image with missing pixels is shown (left), and the image after reconstruction
is performed is shown on the right.

Section 4: Numerical results of reconstruction: Here, MSE, computational time, and input signal
to noise ratio SNR and output peak signal to noise ratio PSNR are calculated and displayed. The wait
bar is implemented in order to visually show the reconstruction progress. It is important to note that
the user can select the arbitrary image that needs to be located within MATLAB m-file (Section 5).
Section 6 shows the selection of the algorithms.

5. Additional Experimental Evaluation

In this section, some additional reconstruction scenarios are provided and discussed.

Example 1: Firstly, the 1D signals are tested. The plots from the virtual instrument are extracted
and presented within the diagram in Figure 5. Therefore, the approach that provided successful
reconstruction in all considered signals, TV minimization, is used for obtaining the results in Figure 5.
Signals for heart rate mondtoring, the ECG and the extracted QRS complex; the respiration signal; and
the signals for brain activity monitoring, the EEG and EOG signals, are tested. The signal is firstly
reshaped from vector to inatrix (2D) form. Reshaping is done column-wise. The DCT is considered as
a domain of sparsity and the measurements are collected randomly from this domain. The next step is
the reconstruction of 2D data using TV minimization, as shown in Figure 5. Finally, the reconstructed
signal is back to its 1D form.
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Figure 5. The reconstruction results for different 1D biomedical signals. The total variation (TV}
minimization is used and 45% of samples are considered as wnavailable. EEG, electroencephalography;
EOG, electrooculography.

Example 2: In this example, the reconstruction efficiency is tested for the MRI image. Unlike The
1D case, the MRI image can be successfully recovered with almost all implemented algorithms.
The percentage of missing samples is considered to be around 45. The original and image with
missing samples are shown in Figure 6. The reconstruction procedures show that the radial-Fourjer
provided the best PSNR. However, the processing time is the longest using the radial-Fourier approach.
The reconstruction results are shown in Table 1 and Figure 7.

(b)

Figure 6. The original (a) and image with missing pixels (b); 45% of pixels are unavailable.

Table 1. The PSNR and reconstruction time for different algorithms. TV, total variation; DCT, discrete

cosine transform.

Algorithm Percentage of Missing Pixels  Reconstruction Time (sec) PSNR [dB]
Gradient 45% 11.4 305
Radial-Fourier 43% 1201 47.8
TV-min-DCT 45% 0.9 43.9

Douglas-Rachford 45% 112 315
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(b)

Figure 7. Reconstruction results for the magnetic resonance imaging (MRI) image, considering 45% the
missing information; the results are obtained using the (a) gradient; (b) radial-Fourier; (¢} TV-min-DCT;
and {d) Douglas-Rachford algorithms.

6. Conclusions

Virtual instrument for compressive sensing signal reconstruction is proposed. The software is
composed for a specific purpose, that is, biomedical signal recovery, considering both 1D and 2D
biomedical signals. Several commonly used algorithms for sparse signal recovery are implemented.
Additionally, the proposed instrument enables a comparison of different algorithms, where specific
parameters can be changed independently for each algorithm. The second part of the instrument is
used for image reconstruction. All functions within the instrument can be used, upgraded, or changed
with some other algorithms in order to build other application-related instruments for solving specific
problems. This software can be a useful teol for clinicians and healthcare professionals in an era when
low-power portable medical devices become widely used and when safe and fast communication is of
great interest. The part enabling the comparison of algorithms and choosing the most suitable one can
be useful in medical practice, as it enables selection of the most accurate and fastest approach.
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Abstract: Recovery of arbitrarily positioned samples that are missing in sparse signals recently attracted significant research
interest. Sparse signals with heavily corrupted arbitrary positioned samples could be analysed in the same way as compressive
sensed signals by omitting the corrupted samples and considering them as unavailable during the recovery process. The
reconstruction of the missing samples is done by using one of the well-known reconstruction algerithms. In this study, the
authors will propose a very simple and efficient algorithm, applied directly to the concentraton measures, without
reformulating the reconstruction problem within the standard linear programming form. Direct application of the gradient
approach to the non-differentiable forms of measures lead us to introduce a variable step size algorithm. A criterien for
changing the adaptive algorithm parameters is presented. The results are illustrated on the examples with sparse signals,

including approximately sparse signals and noisy sparse signals.

1 Introduction

In many signal processing applications, a signal that spans
over the whole time domain is located within much smaller
regions in a transformation domain. If we consider a
discrete time-limited signal, it could contain much fewer
non-zero  samples  (coefficients) in an  arbitrary
transformation domain (Fourier domain, discrete cosine
domain, discrete wavelet domain etc.). The signal is then
sparse in this transformation domain. If this condition is
satisfied, we can reconstruct the signal without using the
whole dataset required by the Shannon-Nyguist sampling
theorem. Processing of the sparse signal with a large
number of missing/unavailable samples has attracted
significant interest in recent years. This research area
interacts with many other research areas such as signal
processing, statistics, machine leaming and coding.
Compressive sensing/sampling (CS) is a field dealing with
sparse approximations [1, 2]. The crucial parameter in the
approximation is the number of available samples/
measurements used in the reconstruction. It is directly
related to the number of non-zero coefficients in the sparse
domain [1-3].

The signal samples may be missing because of their
physical or measurements unavailability. Also, if some
arbitrary positioned samples of a signal are heavily
cormupted by a disturbance, it has been shown that it is
better to omit than to use them in the analysis or processing
(by L-estimation, e.g. [4-6]). Bcth these situations
comespond to the CS approximation problems, if the
analysed signal is sparse. Under the conditions defined
within the CS framework, the processing of such a signal
could be performed with the remaining samples, almost ag

in the case if all the missing/unavailable samples were
available.

Several approaches to reconstruct these kinds of signals are
introduced [7-26]. One group is based on the gradient [7] and
the other is based on the matching pursuit approaches [25].
A common approach to this problem is based on redefining
it within the linear programming (LP) as the bound
constrained quadratic program (BCQP). A measure of the
signal sparsity is used as a minimisation function in the
sparse signal reconstruction. This measure is related to
the number of non-zero transformation coefficients. This
kind of measure was also used, especially in the time-
frequency analysis, for measuring the concentration of a
signal representation. Since, the sparsity of a signal in a
transformation domain is related to the number of non-zero
samples, a natural mathematical form to measure the
number of non-zero (significant) samples in a signal
transform is the so called norm-zero (fp norm). It is a sum
of the signal transformation absolute values raised to the
zeroth power. Since this power produces value one for any
non-zero transformation coefficient, it just counts the
number of non-zero coefficients. However, this nom is
very sensitive to any kind of disturbance that can make the
original zero transformation coefficients small but different
from zero. Thus, more robust norms are used. The norm
that may be used for measuring the transformation
concentration, being also less sensitive to the disturbances,
is the nomm-one ¢/, norm). Since the norm-one is not
differentiable around the optimal point, the CS algerithms
reformulate the problem under the nomn-twe (, nomm)
conditions before the optimisation is done.

In this paper, we will present a gradient based algorithm for
the reconstruction of the sparse signals. The presented
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algorithm uses an arbitrary concentration measure in a direct
way, without redefining the problern to a quadratic form and
by using linear programming toels. Since the signal
reconstruction is required in the time domain, the proposed
algorithm performs a search over the missing samples
values in the time domain. The presented algorithm can
reconstruct a large number of missing samples in a
computationally efficient way. The proposed method
belongs to the class of the gradient based CS algorithms
[10). However, common adaptive signal processing and the
CS algorithms avoid the direct use of the measure based on
the norm-one (or similar norms between norm-zero and
norm-one) since it is not differentiable, The intensity of the
gradient cannot be used as an indicator of the proximity of
the iteration values to the algorithm solution. When the
iterations are close to the optimal point, the gradient
intensity remains constant in the norm-one case. Taking a
sufficiently small step over the whole range would not be a
solution, because of an extremely large number of iterations
over a very large set of variables. Here, the adaptive
pradient-based approach is directly applied to an
appropriately chosen concentration measure. Since for the
commonly used norm-one (or any other nerm between
norm-zero and norm-one) based concentration measure the
derivatives are not continuous functions around the
minimum, a variable and self-adaptive step in the algorithm
is introduced. The presented algorithm, with this adaptive
step, reconstructs a large number of missing samples in a
simple and computationally efficient way with an arbitrary
{or computer defined) precision of the results.

The paper is organised as follows. After the introduction, a
review and analysis of the concentration measures in the
processing of sparse signals is done. A gradient-based
algorithm, with its modifications, is presented and
lustrated. The presented algorithm’s efficiency s
demonstrated on several examples with a large number of
missing samples, including the samples missing in the
blocks and the noisy signals. The basic idea for this
algorithm was presented in [27].

2 Measures and direct reconstruction

The concentration measures of the signal transforms were
intensively studied and used in the area of time—frequency
signal analysis and processing. They are used to find an
optimal, best concentrated time—frequency representation of
a signal. The most comumon and the oldest measure,
introduced to measure the concentration of the time-
frequency representations, is defined by Jones, Parks,
Baraniuk, Flandrin, Williams e al. The concentration of a
signal transform X(k) is measured by
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can also be used for measuring the concentration, These kinds
of concentration measures were inspired by the kurtosis as a
measure of the distribution peakedness. Sirnilar forms are

obtained by using the Rényi measures.
Another direction to measure the time—frequency

representation concentration comes from a classical
definition of the time-limited signal duration, rather than
measuring the signal peakedness. It was used in the time-
frequency analysis in [24]. If a signal x(n) is time-limited,
that is, x(n) # 0 only for n € [n], n; — 1], then the number of
non-zero values in x(n) is d=ny; — ny. It can be obtained as

d=lim 3 ] = x| @)

where |x(n)], denotes the so called norm-zero [, of the
signal. In reafity, there is no sharp edge between x(n)# G
and x(n) =0, so the value of d in (2) could, for very large p
{(close to norm-zero), be sensitive to the small values of
[x(x)|. The robustness may be achieved by using lower-order
forms, with 1 < p < oo (norms from !/ to fy).

Therefore the concentration of a signal transform X{(k) =
T[x(n)] can be measured with the function of the form

M = 3 @] ®
k

with l<p<co, comesponding to the nomm
7
Ly = (S |X(k)|””) , where N is the total number of

samples in the signal transform A{k). A lower value of (3)
indicates a better concentrated distribution. For p=1, it is
the norm-one form

1 1
MUTRN = 3 o] = 5 X @),
k

Minimisation of the norm-one of the short-time Fourier
transform  {corresponding to the norm 1/2 of the
spectrogram) is used in [24] to optimise the window width
and to produce the best concentrated signal representation.
The norm-one is also the most commonly used in the CS
algorithms for measuring the signal sparsity/concentration
[1, 2, 17, 18]. Here, we will illustrate the infiuence of the
measure parameter p on the results, including the
explanation why the norms greater than one (p<l,
including {4 case) cannot be used to measure the
concentration. These norms could be used in the ratio forms
(1) only, but not as the stand-alone transformation
measures, as in the case of the | £ p < co measures,

The simplest reconstruction algorithm will be based on a
direct search over all the unavailable/missing samples
values, by minimising the concentration measure. If we
consider a complete set of signal samples {x{1), x(2), ..., x
(N=1)} and M samples x(m), x(ma), ... x(mau) are
missing then the simplest algorithm will be to search over
all the possible values of the missing samples and find the
solution that minimises the concentration measure

ERHEON

min l

x(ny ) x(mig).... x(may )

From the remaining samples, we can estimate the range limits
for the missing samples, {x(my)| < 4. In the direct search
approach, we can vary each missing sample value from
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—A to 4 with a step 24/(L — 1) where L is the number of
considered values within the sclected range. It is obvious
that the reconstruction error is limited by the step 24/(L~1)
used in the direct search. The number of the analysed
values for the M coefficients is L™. Obviously, the direct
search can be used for a small number of missing samples
only, since for any reasonable accuracy the value of £, is large.

One possible approach to reduce the number of operations
in the direct search is to use a large step (small L) in the first
(rough) estimation, then to reduce the step around the rough
estimate of the unavailable/missing values x(m), x(my), ...,
X{(mgy). This procedure can be repeated several times, until
the desired accuracy is achieved. For exampie, for 4 =1, an
accuracy of 0.001 is aehieved in one iteration if L =2001
with, for example, seven missing samples that would
mean an unacceptable number of 20017~10% measure
calculations. However, if the first search is done with, for
example, L=35, the rough optimal values are found, and the
procedure is repeated with the L =35 values within the range
determined by the rough optimal in the first step. By
repeating the same proeedure six more times, an accuracy
better than 0.001 is reached with 7x5'~10° measure
calculations. In this way, we have been able to analyse (cn
an ordinary PC, within a reasonable calculation time)
signals with up to ten missing samples.

Although computationally not efficient, the direct search
methed is very important and helpful in the analysis of
various concentration measures with different p, since the
more advanced and efficient methods from the literature
produce results with nice values of p only (e.g. p=1,p=1/2
or p=2). The direet method can be used with any p. Also,
the prebability that we find and stay in a local minimum is
lower in the direct search method than when using the other
algerithms. Thus, we will use the direct search to illustrate
how the solution depends on the ¢hesen norm {concentration
measure form).

Example: Consider a discrete signal
x(n) = 2.55in(20mm/N) (4}

forn=0,1,...,¥ -1, and N =256 is the number of the signal
samples. The case of the two missing samples is presented
first, as the one appropriate for the graphical illustration.
The direct search is performed over the range [—5, 5] with
a step 0.01. Measure (3) is calculated for various values of
the parameter p. The results are shown in Fig. 1. The
measure minimum is located on the true sample values for
p =1 (norms !/, and lower). The measure minimum for p < 1
(including nornm-two, for p=1/2) is not located at the true
signal values. An important case with the two missing
samples and p = is presented in Fig. 2.

To illustrate the measure influence on the mean absolute error
(MAE) the direct search is also performed on the signal

x(n) = 3sin (107m/N) + 2 cos (307m/N) (5)

This signal is composed of ¥ =256 samples while the cases
with the four and seven missing samples are analysed. The
results with 10 and 15 iterations (to reduce the step size)
are presented in Fig. 3. We can see that:

(1) p= 1 (norms [, with g =1/p <1, including {;} produces
accurate results with the MAE depending on the direct

.. norm {,

Sample value
o

% (\j

Sample value
o
&

-5 = -5 S 32
-5 0 5 =5 4] 5
Sample value Sample value
5 = 5 T :
i —eri |
> T ",j g I
20 2 0 L =
LN 3 I
-5 \‘_I:'I_Ofﬂ'l Lﬁ ] 5 form I!M
-5 0 5 -5 0 5
Sample value Sample value

Fig. 1 Measure as a funciion of the two missing sample values
corresponding to various norms

True values of the missing samples are presented with straight lines

search step only. The MAE can be further reduced to the
computer precision by an iterative reduction of the step size.
{2) For p<1 (norms [, with ¢>1, including /) the bias
dominate over the number of iterations, so that the results
are almost independent from the number of iterations.

Almost the same results are obtained for the four and the
seven missing sample cases.

The minimisation using the I, norm: For p=1/2 this
measure is equivalent with the well-known /[, norm used in
the definitions of the standard signal transforms [6]. For the
norm-two (J; norm with p=1/2) the MAE is of the signal
samples order, as shown in Fig. 3. The measure with the
norm has a minimum when the missing signal samples are
set to zero.

This result was expected and can be proven for any number
of missing samples for the signals and its transforms
salisfying Parseval’s thecorem. Parserval’s theorem states
that the energy of a signal in the time domain is the same
as the energy of the Fourier transform in the frequency
domain. We know that a signal has the lowest energy when
its missing samples are zero-valued. Associating any

Measure

£
i

&
s

Fig. 2 Measwe for p =1 (norm 1)) as a function of the missing
samples values
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Fig.3 MAE in the coefficients estimation as a function of the norm (measure) order for the four missing samples (lefl) and the seven missing

samples (right)

The MAE is normalised with the number of missing samples

non-zere value to the missing samples will increase the
signal energy. The same holds in the frequency domain
since the energy in the frequency domain equals to the
energy in the tune domain. The minimisation solution with
the /, norm is therefore trivial. With this nomm, we attempt
to minimise

N—1
XK= @l
k=0

According to, Pamseval’s theorem we have ||X||§ =
N Zﬁ___:ol |x(n)|2. Since any value other than x(n)=0 for the
unavailable/missing signal samples would increase HXllg,
then the solutions for the non-available samples, with
respect to the / norm, are all zero values. This was the
reason why this norm was not used as a concentration
measure. This is also the reason why this norm cannot be
used in the CS-based algorithms for the missing samples
recovery.

Therefore, in theory, the most obvious case for the
concentration measures is for p — co when the norm /; is
used. This value counts exactly the number of the non-zero
eoefficients (sparsity), regardless of their value. However,
this norm is not applicable in practice since it is extremely
sensitive 1o any kind of disturbance, even to a computer
precision error. Also, the gradient based algorithms cannot
be used with this norm. The norms with p <1 produces
biased results. We have proven that, for example, the normn
I (with p=1/2) would bc minimal when all the missing
samples are st to zero. Thus, the value p=1 is an obvious
and simple choice and it is most commonly used in the
lterature. The restricted isometry property is used to prove
that under some conditions this norm produces the same
result as [y [1, 2]. Some improvements may be achieved by
using values just slightly lower than p=1. Then, the results
will be slightly biased, but the norm will be differentiable.
It can improve the gradient-based algorithms performance,
especially in a few starting iterations.

3 Adaptive gradient-based algorithm

Owing to a high computational complexity, the direct search
could be used only if the number of missing samples M is
small enough. 1t is the reason why many other, more
sophisticated, C$ algorithms have been proposed. Here, we
will present one very simple and efficient algorithm, based
on the direct use of the concentration measure gradient.

e ' a AAma VIl A M. A - AMPL ACER

This algorithm 1s inspired by the adaptive signal processing
methods with a variable step size. This algorithm is a
gradient descent algorithm where the missing samples are
estimated as the ones preducing the minimal concentration
measure of the signal transform in the sparse domain.

The norms that produce the unbiased missing samples
values (such as, eg nomms with p>1) are not
differentiable around the oplimal peint. It means thar the
gradient methed, if directly applied to the measure based
on, for example, the /| norm (or any other nerm with p > 1)
will have a problem when approaching the optimal point.
Since the gradient intensity in the vicinity of the optimal
point is almost constant for p=1, the algorithm will not
improve the accuracy to a level lower than the accuracy
defined by the step in the gradient algorithm. This is the
reason why this approach has not been used and why
appropriate reformulation of this problem is done in the
literature. These reformulations are done within the linear
programming by using the well-known and available
norm-two-based solutions. Here, we will not try to
reformulate the problem based on the /, nomm within the
linear programming /, framework, but we will use the
gradient-based adaptive algerithm, with the step being
appropriately adjusted {in a simple way) around the optimal
point, The algorithm presented here will be a simple and
efficient application of the gradient-based adaptive approach
to the measures that are not differentiable around the
optimal point.

As we can see from Fig. 2, the measure with p=1 is
differentiable and convex everywhere excepl around the
point of the minimum (the optimisation solution point).
Therefore, any algorithm applied directly to the measure
based on p=1 will ascillate around the solution with an
amplitude defined by the step and the measure form (this
will be illustrated within the examples). If we take a very
small step for each of a large number of missing samples,
it will result in an unacceprable and large number of
iterations. Thus, when the steady oscillatory state in the
measure function is detected we should reduce the
algorithm step, as we presented in the direct search. In
this way, the results with a high accuracy, within an
aceeptable number of iterations, are achieved by using a
variable self-adaptive step. This simple method is able to
produce the results with an error of the computer precision
level. Finally, in addition to the step variation, these kinds
of algorithms enable the parameter p (the norm form
itself) to change to improve the initial convergence of the
algorithm.
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3.7 Algorithm

Consider a discrete signal x(n) with some samples that are not
available. Assume that the signal is sparse in a transformation
domain 7{x(n)]. The algorithm for the missing samples
reconstruction is implemented as follows:

Step 0: Form the initial signal y@(n), where (0) means that
this is the first iteration of the algorithm, defined as

0 x(n) for available samples
yoin) = ol
0 for missing samples

Step 1: For each missing sample at n; we form two signals
vy(r) and wy(#) in each next iteration as

(k)
Wy | +A forn=n,
7 {y‘% forn # n,
(%)
(k) _ ) ym) ~ A forn= n;
v (n) = {y(k)(n) for n # n,

where £ is the jteration number. Constant A is used to
determine whether the considered signal sample should be
decreased or increased.

Step 2: Estimate the differential of the signal transform
measure as

o M,,[T[y&’"(n)]]z—A M, [TB )| o

where M, is defined by (3). The differential of the measure is
proportional to the error (y*(n) — x(n)).

Step 3: Form a gradient vector G with the same length as the
signal x{n). At the positions of the available samples, this
vector has value G{n}=0. At the positions of the missing
samples its values are g{(n;), calculated by {6).

Step 4: Correct the values of y(n) iteratively by

P ) = Y8y — wGn)

where 1 is a step size that affects the performances of the
algorithm (the error and the speed of convergence).

By repeating the presented iterative procedure, the missing
values will converge to the true signal values which produce a
minimal concentration measure in the transformation domain.
The algorithm performance depends on the parameters u
and A.

3.2 Varying and adaptive step size

Since we use a difference of the measures to estimate the
gradient, when we approach the optimal peint, the gradient
with nomm /, will be constant and we will not be ablc to
approach the solution with a precisicn higher than the step
4, multiplied by a constant (gradient dependent) value. If
we try to reduce the oscillations around the true value by
using a smaller step from the beginning, then we will be
faced with an unacceptable number of iterations. However,
this problem may be solved, by reducing the step size,
when we approach the stationary oscillations zone. The best
solution is to use an adaptive step size in the algorithm.
A large step size should be used when the concentration
measure is not close to its minimum {in the starting

iterations). The step is reduced as we approach the
concentration measure minimum. Next, we will present a
method for the adaptive parameters adjustment that could
be applied to the algorithm in order to reduce the error and
increase the accuracy.

When the algerithim with the constant parameters is close to
the optimal point, the concentration measure tends to have
constant value in a few consecutive iterations. This behaviour
will be detected by checking the difference between two
consecutive measure caleulations Mf,k_]) — Mg‘), where
Mg‘) = MP[T[y(k)(rz)]] Is the sparsity measure of the
reconstructed signal in the &th iteration. When it is smaller
than, for example, 1% of the highest previously calculated
measure difference

Mgil) — M[()k) < P max
m=1,2,.. k|

(m=1) {m)
MY = My {7
where £=0.01, the algorithm parameters A and i should be
reduced, for example, by ten times.

4 Numerical examples

Consider the signal

x(n) = 3sin(20mn/N) + 2cos (60mn/N)
+0.5sin(110mr/N) (8)

The total number of the signal samples is ¥ = 256. We assume
that 200 samples (80% of the total number of samples) are
missing or are not available. Two cases will be considered.
One, when the missing samples are randomly positioned
and the other when the samples are missing in randomly
positioned blocks. We know their positions, and also that
the signal is sparse in the Fourier domain. Here, we will
perforrn  the signal reconstruction with the constant
algorithm parameters A==2, z=3 and p=1.

The reconstruction results are shown in Figs. 4 and 5. Since
the constant algorithm parameters are used, the achieved error
is small but stilf notable, Figs. 4d and 5d. The residual error
value is determined by the algorithm parameters. Next, we
will analyse the influence of the parameters A, 1 and p on
the number of iterations and the mean absolute error
(MAE). The MAE in the Ath itcration, calculated as

MAE(E) = = 3 i) —9(0)

is shown in Fig, & for various algorithm setups. It can be
concluded that for the constant algerithm parameters, the
MAE cannot be improved by increasing the number of
iterations below some limit. Smaller values of A and u
produce lower MAE but with an increased number of
iterations, as presented in Figs. 6« and b. The results
obtained for varying A and u are presented in Fig. 6¢. Here,
the parameters are changed at the iterations £= 100 and k=
200. We can see that with the same nurnber of itcrations, a
smaller MAE is achieved. Therefore, the parameters A and
1 should be adaptive, resulting in the MAE presented in
Fig. 6d4. Here, we detect that, after a number of iterations,
the gradient algorithm does not further improve the sparsity
of the reconstructed signal. Then, we use the smaller values
of A and x4 for the next itcrations, as described in the
previous section. In Figs. 6e and f, the absolute errors in
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Fig. 8 MAE for the constant algorithm parameters A and i

a and & Variable parameters and adaptive paramelers
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¢ and /° For (he canstant algorithm paramelers (lines a and b), variable {line ¢) and adaplive parameters {linc d)

two signal samples, during the iteration process, are shown
for all the previous cases of the algorithm setup. It can be
seen that the absolute errors behave in a similar manner as
the MAE in the above subplots, with the difference that
they oscillate around the steady wvalue, because of the
non-differentiable measure around the solution,

Adaptive  algorithm  parameters: From the previous
analysis and the theoretical considerations, we have
concluded that the adaptive algorithm parameters should
be used. The results obtained by the proposed method for
a seclf-adaptive parameter adjustment are presented in
Fig. 7. Criterion (7) for the adaptive step size is applied
on signal (8), with 150 randomly positioned missing signal
samples. The starting parameters for the adaptive algorithm
were A=20 and u =20. The graphics in Fig. 7a illustrates
the MAE as a function of the iteration number. Each line on
this graph matches one set of the parameters A and g, The

parameter values were divided by ten (and the line in the
graph is changed) when the condition (7) is met.

The dashed lines represent the MAE when the algornithm
with constant parameters is run from the same initial point.
Line a is for the MAE when the constants A=20 and x4 =20
are used. Line b is for the MAE when A=20 and g =20 are
used at the beginning, whereas the algorithm has changed
the parameters to A=2 and x#=2 when condition {7) is
met. The dashed line b represents the MAE if A=2 and
(=2 are used from the first iteration. Line ¢ is for the
MAE when the algorithm parameters at the beginning
were A=20 and =20, then changed to A=2 and z=2,
and finally changed to A=0.2 and x#=02. The dashed
line ¢ represents the MAE if A=02 and p=0.2 were
used from the first iteration. This process continues in the
same way 2 more times for Figs. 7a and 12 more times
for Fig. 7&.
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Note that from the behaviour of the dashed lines (constant
parameters) we can conclude that they achieved their
stationary state in ten times more iterations than by using
the previous larger parameters. The dashed line b achieved
the stationary MAE in about 50 iterations and dashed line ¢
in about 500 iterations. Hence, we can expect that the
dashed line d will achieve its stationary MAE in about
5000 iterations and so on.

We may conclude that the MAE would achieve a 107'°
value (what is the standard computer double precision error)
in about 10'* iterations with the corresponding constant
parameters. Of course, this is not acceptable in the practical
calculations. As we can see, the same order of the MAE is
schieved by the presented adaptive algorithm in a relatively
small number of iterations (about 350).

The performances of the proposed algorithm are compared
with the /-magic algorithm. We have mun the /j-magic
algorithm, with the default parameters, by using the signal
from this example. The recovery result with 50 missing
samples is obtained in 0.35s, with the relative MAE=
0.0027. Then, we set the number of iterations in our
algorithm to take about the same calculation time. We
achieved an error of MAE=3.8 x 10" '* with the proposed
adaptive algorithm. For the 100 missing samples, the
/y-magic produced results with MAE=0.08, whereas the
presented algorithm, within the same calculation time,
produced results with MAE =0.01. The /,-magic, with the
default parameters, stopped calculation after achieving the
results with these precisions. Qur algorithm would always
be able to produce the results with a computer precision
crror of 107'* order, if not stopped by the user. The
proposed algorithm produced accurate recovery with up to
about 80% of the missing samples. This limit is slightly
better than the /,-magic algorithm (about 75%).

Reconstruction of the approximately sparse signals:
Consider the signal:

x(m) =3sin{11.27n/N)+ 55in (50.67/N)

+ 2cos (160.87n/N) (G
whose frequencies do not match with the frequency grid in the
DFT. By definition, this signal is not sparse in the common
DFT domain. We will apply the presented gradient
algorithm with A=3 and =4 on this signal, when 70
signal samples are missing. Although the analysed signal is
not sparse in a strict sense, satisfactory reconstruction
results are obtained. Figs. 8u¢-¢ present the original signal,
the available signal samples and the reconstrueted signal,
respectively. In Figs. 8d~f, the DFT coefficients of the
original signal, the available samnplcs and the reconstructed
signal are shown, respectively. As we ean see, aithough the
original signal is not sparse (since its frequencies do not
match with the frequency grid), the reconstruction is good.

Noisy signals: The proposed algorithm is used for the
analysis of a noisy signal. It has been assumed that a sparse
signal (8) is corrupted by an additive Gaussian noise. From
the reconstruction based on a limited number of samples,
we can come to a conclusion that in the case of the sparse
noisy signals certain improvement can be achieved if a
number of signal samples are omitted and the
reconstruction is performed. Reconstruction for the 200
omitted samples is presented in Fig. 9.

When we omit some of the noisy samples of a sparse
signal, the algorithm wili try to reconstruct these samples in
such a way as to keep high sparsity. It means that thc goal
of the algorithm is to keep the influence of noise, that is not
sparse, as low as possible. A modest improvement of 2 dB
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Fig. 9 Reconstiuction example for a noisy signal with 200 omifted samples

a Original signal

b Signal with omitied samples set to ¢ and used as an input o the reconslruction algorithm

¢ Reconstructed signal
d Reeonstruction error (residual noise)
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Fig. 10 SNR of the reconstructed signal as a function of the
number of omilted samples (upper line). SNR of the original
signal (lower line).

is achieved in average when we randomly remove about 150
out of the 256 samples, as shown in Fig. 10. Obviously, the
remaining 106 samples where sufficient to reconstruct the
sipnal. Some of the noise that was removed with the
omitted samples is not reintroduced (in average). Similar
results could be expected for other recovery algorithms. In
this example, the signal samples, corrupted by a Gaussian
noise, are removed randomly. The improvement could be
higher if we were able to selectively remove the most
corrupted samples. A significant improvement may be
achieved in the case of the impulse noise, in combination
with a sophisticated tool for neoisy samples removal, such
as, for example, the L-statistics [5]. Then, the most
corrupted samples are removed along with a significant
amount of the noise energy. Selective removal of the noisy
sarmples is the topic for future work.

Varying caoncentration measure: The number of iterations
for the required accuracy can be further improved by
varying the measure parameter p. The measures for p <1
are more suitable to the gradient-based reconstruction.
However, the measures for p<1 do not converge to the true
values of the missing samples. A passible solution is to use
measures with p slightly lower than 1 at the beginning of
the iterative algorithm and to switch to p=1 afterwards.
Fig. 11 illustrates the case when p=0.9, A=1 and p=10
are used for the iterations from 1 to 12, p=0.95, A=2 and
4=4 are used for the iterations 13-22, and finally p=1,
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Fig. T1 Reconstruction MAE for the constant and the varying
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A=1 and g =2 are used for the iterations from 23 to 100,
with the signal defined by (8). The case with the constant
parameters p=1, A=] and u=2 is presented in the same

figure.

5 Conclusions

In this paper, we have presented an algorithm for the
unavailable/missing samples reconstruction in the sparse
signals. The algorithm is based on the concentration
measures used to quantify the signal sparsity. Since the
commoenly used measures are not differentiable around the
optimal point, a criterion for the wvariable algorithm
parameters is introduced. The presented, gradient-based,
adaptive step size, algorithm is able to achieve the
computer precision accuracy in a simple and numerically
efficient way. The algorithm is applied to the signals that
are sparse in the DFT domain, including the signals that are
only approximately sparse. An example with a noisy signal
is considered. This algorithm can be applied on any
concentration/sparsity measure form. A simple example on
this topic is also presented.

The algorithm application may be extended fto any
non-stationary signal with an appropriately chosen
transformation domain, wherc the considered non-stationary
signal is sparse. The most obvious extension could be to
the linearly frequency modulated signals that are sparse in
the first-order polynomial Fourier transform domain. These
signals are also sparse in the domain of the fractional
Fourier transform. Further steps in the generalisation would
be on the analysis of the higher order polynomial phase
signals with the corresponding polynemial transforms,
where these signals are sparse. Another possible extension
of the presented algorithm would be on the analysis of the
sinusoidally modulated signals, with the inverse Radon
transform of their time-frequency representation as the
sparsity domain.
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bin/irnlst/ilresults.cgi?PC=K &Full=IET%208ignal%20Processing

S. Stankovié, I. Orovié, N. Zarié, and C. loana, “Two Dimensional Time-Frequency
Analysis based Eigenvalue Decomposition Applied to Image Watermarking,” Multimedia
Tools and Applications, Vol.49, No. 3, Sept. 2010., pp. 529-543. (Print ISSN: 1380-7501,
Online ISSN: 1573-7721, DOI: 10.1007/511042-009-0446-x)

Link na rad:

th_p:/[1ink.springer.com/article/ 10.1007%2Fs1 1042-009-0446-x

SCI lista:

http://science.thomsonreuters.com/cgi- o
binfirnlst/ilresults.cgi?PC=MASTER&Ful1=Multimedia%20Tools%20and%20Apphcat10

ns
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Na osnovu ¢lana 72 stav 2 Zakona o visokom obrazovanju
(»SluZbeni list Crne Gore" br 44/14, 47/15, 40/16, 42/17, 71/17,
55/18, 3/19, 17/19, 47/19) i ¢&lana 32 stav 1 tadka 9 Statuta
Univerziteta Crne Gore, Senat Univerziteta Crne Gore na sjednici
odrZzanoj 04.06.2020. godine, donio je

ODLUKU
O IZBORU U ZVANJE

Dr Irena Orovi¢ bira se u akademsko zvanje redovni profesor
Univerziteta Crne Gore za oblasti Radunarstvo i Digitalna
obrada signala, na Elektrotehnickom fakultetu Univerziteta Crne

Gore, ha neodredeno vrijeme.
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Prof. dr Milos Dakovié

BIOGRAFI1JA

Milo§ Dakovi¢ je roden 1970. godine u Nik§i¢u, Crna Gora. Diplomirao je 1996.,
magistrirao 2001. i doktorirao 2005. godine, na Elektrotehnickom fakultetu Univerziteta Crne
Gore. Redovni je profesor na Univerzitetu Crne Gore od 2017. godine.

Ucestvovao je u vie od 10 naucno-istrazivackih projekata finansiranih od strane
Volkswagen fondacije, crnogorskog Ministarstva nauke i kanadske vlade (DRDC). Recenzent je
u viSe medunarodnih ¢asopisa, medu kojima su: IEEE Transactions on Signal Processing, IEEE
Signal Processing Letters, IEEE Transactions on Image Processing, IET Signal Processing,
Signal processing i Geoscience and Remote Sensing Letters.

Dosadasnji nau¢no-istraZivacki rad profesora Dakovica rezultovao je objavljivanjem vise
od 100 radova, od Cega je preko 40 u vode¢im medunarodnim €asopisima. Koautor je knjige
Time-Frequency Signal Analysis with Applications Ciji je izdavac Artech House, Boston.

Oblasti njegovog naulno-istraZivackog interesovanja su: obrada signala, vremensko-
frekvencijska analiza signala, obrada radarskih signala i compressive sensing.

Dr Dakovi¢ je dobitnik GodiSnje nagrade za naufna dostignica u 2015. godini, u
kategoriji pronalaza¢ — inovator za najuspjesnije inovativno rjeSenje, koju urucuje Vlada Crne
Gore.

Vise detalja i kompletan spisak referenci moZe se pronaci na sajtu www.tfsa.ac.me.

DESET ZNACAJNILJIH REFERENCI

1. LJ. Stankovié, M. Dakovi¢, and T. Thayaparan, Time-Frequency Signal Analysis with
Applications, Artech House, Boston, March 2013 (ISBN- 978-1-60807-651-2, eBook
ISBN: 978-1-60807-652-9)

Link knjige na sajtu Amazon.com: http://www.amazon.com/Time-Frequency-Signal-

Analysis-Applications-Artech/dp/1608076512
Pregled knjige dostupan je na books.google.com. Knjiga se moZe pronaci i na sajtu

renomiranog medunarodnog izdavafa Artech House: www artechhouse.com

2. LJ. Stankovié, S. Stankovi¢, and M. Dakovi¢, “From the STFT to the Wigner
distribution,” IEEE Signal Processing Magazine, Vol. 31, No. 3, May 2014, pp. 163-174
(ISSN: 1053-5888) DOI: 10.1109/MSP.2014.2301791
Link na rad: http://ieeexplore.ieee.org/document/6784080/

SCI lista:
http://mjl.clarivate.com/ coi-bin/imlst/jlresults.cgi?PC=MASTER&ISSN=1053-5888

3. LJ. Stankovi¢, M. Dakovi¢, and E. Sejdi¢, “Vertex-Frequency Analysis: A Way to
Localize Graph Spectral Components,” IEEE Signal Processing Magazine, Vol.34, No. 4,
July 2017, pp. 176-182, (ISSN: 1053-5888) DOI: 10.1109/MSP.2017.2696572
Link na rad: http://ieeexplore.ieee.org/document/7974871/

SCI lista:
http://rni1.clarivate.com/cqi—bin/irnlst/ilresults.cgi?PC=MASTER&ISSN =1053-5888




10.

. LJ. Stankovi¢, M. Dakovi¢, and S. Vujovi¢, “Adaptive Variable Step Algorithm for

Missing Samples Recovery in Sparse Signals,” IET Signal Processing, vol. 8, no. 3, pp.
246 -256, 2014, (ISSN: 1751-9675) DOI: 10.1049/iet-spr.2013.0385

Link na rad: http://ieeexplore.ieee.org/document/6817404/

SCI lista:
http://mjl.clarivate,com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=1751-9675

M. Dakovi¢, T. Thayaparan, and LJ. Stankovi¢, “Time-frequency based detection of fast
manoeuvring targets,” IET Signal Processing, Vol. 4, No. 3, June 2010, pp. 287-297.
(ISSN: 1751-9675) DOI: 10.1049/iet-spr.2009.0078

Link na rad: http://ieeexplore.ieee.org/document/5485216/

SCI lista:
http://mjl.clarivate.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=1751-9675

LJ. Stankovi¢, and M. Dakovi¢, “On a Gradient-Based Algorithm for Sparse Signal
Reconstruction in the Signal/Measurements Domain,” Mathematical Problems in
Engineering, vol. 2016, Article ID 6212674, 11 pages, 2016. (ISSN: 1024-123X)
DOI:10.1155/2016/6212674.

Link na rad: https://www.hindawi.com/journals/mpe/2016/6212674/abs/

SCI lista:
http://mjl.clarivate.com/cgi-bin/jrnlst/jiresults.cgi?PC=MASTER&ISSN=1024-123X

LJ. Stankovi¢, and M. Dakovié, “On the Uniqueness of the Sparse Signals
Reconstruction Based on the Missing Samples Variation Analysis,” Mathematical
Problems in Engineering, vol. 2015, Article ID 629759, 14 pages, 2015. (ISSN: 1024-
123X) DOI:10.1155/2015/629759

Link na rad: https://www.hindawi.com/journals/mpe/2015/629759/abs/

LJ. Stankovié, M. Dakovi¢, and S. Vujovié, “Reconstruction of Sparse Signals in
Impulsive Disturbance Environments,” Circuits, Systems and Signal Processing, vol.
2016. pp. 1-28, (ISSN: 0278-081X), DOI: 10.1007/500034-016-0334-3

Link na rad: https:/link.springer.com/article/10.1007/s00034-016-0334-3

SCI lista:
http://mil.clarivate.com/cgi-birn/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0278-081X

LJ. Stankovi¢, M. Dakovi¢, I. Stankovi¢, and S. Vujovi¢, “On the Errors in Randomly
Sampled Nonsparse Signals Reconstructed with a Sparsity Assumption,” IEEE
Geoscience and Remote Sensing Letters, November, 2017, (ISSN 1545-598X) DOI:
10.1109/LGRS.2017,2768664

Link na rad: http://ieeexplore.ieee.org/abstract/document/8110831/?reload=true

SCI lista:
http://mil.clarivate.com/cgi-bin/jrnlst/jlresults,cgi?PC=MASTER&ISSN=1545-598X

LJ, Stankovi¢, M. Dakovi¢, T. Thayaparan, and V. Popovi¢-Bugarin, “Inverse Radon
Transform Based Micro-Doppler Analysis from a Reduced Set of Observations,” IEEE
Transactions on Aerospace and Electronic Systems, Vol. 51, No. 2, April 2015. (ISSN:
0018-9251) DOI: 10.1109/TAES.2014.140098

Link na rad: hitp://ieeexplore.ieee.org/abstract/document/7126172/

SCI lista:
http://mjl.clarivate.com/cgi-bin/j mist/jlresults.cgi?PC=MASTER&ISSN=0018-9251
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Doc. dr. sc. Jonatan Lerga

Jonatan Lerga Head of Department of Computer Engineering and Head of Laboratory for
Application of Information Technologies with Faculty of Engineering, University of Rijeka,
Croatia, received his PhD degree from the Faculty of Electrical Engineering and Computing,
University of Zagreb, Croatia in 2011. Since 2007 he has been with the Faculty of Engineering,
Umniversity of Rijeka, Croatia. In 2012 he received the annual award of the Croatian Academy of
Engineering for his scientific achievements. He also received the annual award of the City of Rijeka
in 2015 and the Primorje-Gorski Kotar County in 2018. Also, he received awards from the
Foundation of the University of Rijeka in 2008, 2010 and 2018. His main research interests are
statistical signal and image processing, time-frequency signal analysis, information theory, coding
and signal processing applications.

Selected references
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Adaptive Modification of Intersection of Confidence Intervals Rule, Sensors 2020, 20, 6920.
Sensors: Q1 (Scimago), Q1 (Thomson Reuters), impact factor 3.275

2. Petrovska, B.; Zdravevski, E.; Lameski, P.; Corizzo, R.; Stajduhar, 1.; Lerga, J.: Deep Learning
for Feature Extraction in Remote Sensing: A Case-Study of Aerial Scene Classification, Sensors
2020, 20, 3906. Sensors: Q1 (Scimago), Q1 (Thomson Reuters), impact factor 3.275

3. Ignatoski, M.; Lerga, J.; Stankovi¢, Lj.; Dakovié, M.: Comparison of Entropy and Dictionary
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(Scimago), Q2 (Thomson Reuters), impact factor 2.532

7. Madhale Jadav, G.; Lerga, J.; Stajduhar, I.: Adaptive Filtering and Analysis of EEG Signals in
the Time-Frequency Domain Based on the Local Entropy, EURASIP Journal on Advances in
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for X-Ray Image Segmentation and Fracture Detection, Entropy, vol. 21, no. 4, 338, pps. 18,
2019. Entropy: Q2 (Scimago), Q2 (Thomson Reuters), impact factor 2.494
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Matiéni odbor za podrudje tehnié¢kih znanosti

STROJARSTVA [ BROTIDGR, 'J “?T"

- polja elektrotehnike i raunarstva mg_;;iﬂm!xﬁf Dﬁkz_?égﬁz [ﬁw Bf"*"““‘____"
Klasifikacijska oznaka: | reded
KLASA: UP/I-640-03/18-01/0545 (’(0—05/{5—0.([009.{ O '
URBROJ: 355-06-04-18-0004 Urudsbeni broy RIZN
Zagreb, 12. srpnja 2018. A 106-03-03- {8 - 0044 }' = i

Na temelju ¢&lanka 35, 1 35, Zakona o znanstvenoj djelatnosti 1 visokom obrazovanju
(NN 123/03, 158/03, 105/04, 174/04, 46/07, 45/09, 63/11, 94/13, 139/13, 101/14, 60/15) Mati&ni odbor za
podrucje tehnickih znanosti — polje elektrotehnike i ratunarstva, na 5. sjednici odrZanoj 12. stpnja 2018. donosi

ODLUKTU

o izboru u znanstveno zvanje

Dr. sc. JONATAN LERGA, docent Tehnitkog fakulteta Sveuéili§ta u Rijeci, izabire se u znanstveno zvanje
viSeg znanstvenog suradnika u znanstvenom podrudju tehnickih znanosti — polje radunarstvo.

ObrazloZenje

Sukladno ¢lanku 35. i 35. Zakona o znanstvenoj djelatnosti i visokom obrazovanju pristupnik dr. sc. Jonatan
Lerga, podnio je dana 4. prosinca 2017. Fakultetu elektrotehnike, strojarstva i brodogradnje Sveudilidta u Splitu
zahtjev za izbor u znanstveno zvanje viseg znanstvenog suradnika.

Na prijedlog Struénog povjerenstva imenovanog na sjednici Fakultetskog vije¢a Fakulteta elektrotehnike,
strojarstva i brodogradnje Sveugilidta u Splitu dana 24. sije¢nja 2018., koje je za pristupnika dalo svoje misljenje
o ispunjenju uvjeta iz Pravilnika o uvjetima za izbor u znanstvena zvanja ~ &1, 15, tehnitke znanosti (NN 28/17),
Fakultetsko vije¢e Fakulteta elektrotehnike, strojarstva i brodogradnje Sveudilidta u Splitu na svojoj sjednici
odrZanoj 21. oZujka 2018. utvrdilo je da pristupnik ispunjava sve uvjete za izbor u znanstveno zvanje vifeg
znanstvenog suradnika v znanstvenom podruéju tehni€kih znanosti — polje ralunarstvo.

Mati¢ni odbor prihvatio je prijedlog Fakultetskog vijeta Fakulteta elektrotehnike, strojarstva i brodogradnje
Sveudilidta v Splitu na 5. sjednici odr#anoj 12. srpnja 2018. te izabrao pristupnika u znanstveno zvanje vileg
znanstvenog suradnika, uzevsi u obzir €l. 32. st. 7. Zakona.

UPUTA O PRAVNOM LIJEKU: Protiv Odluke o izboru u znanstveno zvanje pristupnik nema pravo Zalbe, ali
moZe pokrenuti upravni spor pred Upravnim sudom u Rijeci u roku od 30 dana od dana dostave pristupniku.
Tuzba se predaje Upravnom sudu u Rijeci neposredno u pisanom obliku, usmeno na zapisnik ili se 3alje po¥tom

odnosno dostavlja elektronicki.
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Odluka se dostavlja:
1. Dr. sc. Jonatan Lerga
2. Fakultet elektrotehnike, strojarstva i brodogradnje u Splitu
3. Ministarstvo znanosti i obrazovanja
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Mati¢ni odbor za podruéje tehnickih znanosti
- polja elektrotehnike i ra¢unarstva

KLASA: UP/1-640-03/19-01/0950
URBROI: 355-06-04-19-0002
Zagreb, 12. srpnja 2019.

Na temelju <¢&lanka 33. 1 35, Zakona o znanstvenoj djelatnosti i visokom obrazovanju
(NN 123703, 198/03, 105/04, 174/04, 46/07, 45/09, 63/11, 94/13, 139/13, 101/14, 60/15) Mati¢ni odbor za
podrugje tehniCkih znanosti — polje elektrotehnike i radunarstva, na 9. sjednici odrzanoj 12. srpnja 2019, donosi

ODLUKU

0 izboru u znanstveno zvanje

Dr. sc. JONATAN LERGA, docent Tehnickog fakulteta Sveudilista u Rijeci, izabire se u znanstveno zvanje
viSeg znanstvenog suradnika u znanstvenom podruéju tehnitkih znanosti — polje elektrotehnika.

ObrazloZenje

Sukladno &lanku 33. i 35. Zakona o znanstvenoj djelatnosti i visokom obrazovanju pristupnik dr. sc. Jonatan
Lerga, podnio je 16. svibnja 2019. Tehni¢kom fakultetu Sveudili§ta u Rijeci zahtjev za izbor u znanstveno

zvanje viSeg znanstvenog suradnika.

Na prijedlog Struénog povjerenstva imenovanog na sjednici Tehni¢kog fakulteta Sveuéilista u Rijeci 31. svibnja
2019., koje je za pristupnika dalo svoje misljenje o ispunjenju uvjeta iz Pravilnika o uvjetima za izbor u
znanstvena zvanja — ¢l. 1, t&. 2. tehnike znanosti (NN 84/05, 100/06, 138/06, 120/07, 71/10, 116/10, 38/11),
Fakultetsko vije¢e Tehnickog fakulteta Sveudilidta u Rijeci na svojoj sjednici odrzanoj 28. lipnja 2019, utvrdilo
je da pristupnik ispunjava sve uvjete za izbor u znanstveno zvanje viSeg znanstvenog suradnika u znanstvenom
podruéju tehni¢kih znanosti — polje elektrotehnika.

Matiéni odbor prihvatio je prijedlog Fakultetskog vije¢a Tehnitkog fakulteta Sveudilidta u Rijeci na 9. sjednici
odrzanoj 12. srpnja 2019, te izabrao pristupnika u znanstveno zvanje videg znanstvenog suradnika.

UPUTA O PRAVNOM LIJEKU: Protiv Odluke ¢ izboru u znanstveno zvanje pristupnik nema pravo Zalbe, ali
moZe pokrenuti upravni spor pred Upravnim sudom u Rijeci u roku od 30 dana od dana dostave pristupniku.
Tuba se predaje Upravnom sudu u Rijeci neposredno u pisanom obliku, usmeno na zapisnik ili se $alje postom

odnosne dostavlja elektronicki.

Odluka se dostavlja:
1. Dr. s¢. Jonatan Lerga
2. Tehnicki fakultet u Rijeci
3. Ministarstvo znanosti i obrazovanja



Sveutiliste u Rijeci
TEHNICKI FAKULTET
Klasa: 120-01/19-01/34
Ur. broj: 2170-57-01-19-1
QIB: 46319717480

Rijeka, 15. 09. 2019.

Temeljem €lanka 31. Statuta Tehnifkog fakulteta Sveuéilista u Rijeci dekanica donosi
ODLUKU O PLACI

1.) Dr. sc. Jonatan Lerga zaposlen je na poloZaju I. vrste, predstojnik zavoda, docent te mu se
utvrduje koeficijent sloZzenosti poslova 2,037,

2.) Zaposlenik-ca ima na dan donosenja ove Odluke ukupno 12 godina, 10 mjeseci i 1 dan radnog
staZa.

3.) Za svaku navrSenu godinu radnog staza umnoiak koeficijenté sloZenosti poslova | osnovice za
izraun place uvecava se 0,5%.

4.) Zaposleniku-ci pripada dodatak na plaéu od 15%, a za akademski stupan] doktora znanosti.
Dodatak se obracunava dodavanjem na osnovnu bruto plaéu.

5.) Ova Odluka stupa na snagu 01. listopada 2019, godine, a primjenjuje se nakon §to nadleino
Ministarstvo odobri koeficijent.

ObrazloZenje;
Primjenom ¢lanka 50. Temeljnog kolektivhog ugovora za sluibenike i namjedtenike u javnim
sluzbama («Narodne novine» br. 128/17) odiuéeno je kao u izreci.
Pojmovi koristeni u ovoj Odluci keji imaju rodni znacaj primjenjuju se jednako na osobe muskog i
ienskog spola.

Pouka o pravnom lijeku:
Protiv ove Odiuke moZe se dekanici uloziti zahtjev za zaStitu prava v roku od 15 dana od njenog

primitka.

Dekanica:

Prof. dr. sc. Jasna Prpic-Orsic

M-t

Dostaviti:

1. Zaposlenik

2. Rafunovodstvo

3. Opca i kadrovska sluzba



